Taylor Polynomials and Taylor's Inequality Calculus: 2 ${ }^{\text {nd }}$ Edition by Dennis Berkey

1a. Find the 3rd order Taylor polynomial for $\mathrm{f}(\mathrm{x})=\ln (\mathrm{x}+1)$ centered at $\mathrm{x}=0$.
b. Then find the Lagrange Error Bound when $\mathrm{x}=.2$

2a. Find the 3rd order Taylor polynomial for $f(x)=e^{x}$ centered at $x=0$.
b. Then use Taylors Inequality to find $\left|f(.4)-P_{3}(.4)\right| \leq \mathrm{R}$ at $\mathrm{x}=.4$

3a. Find the 3rd order Taylor polynomial for $\mathrm{f}(\mathrm{x})=\sin x$ centered at $\mathrm{x}=\frac{\pi}{6}$.
b. Then use the Remainder Estimation Thm to find $\left|f(x)-P_{3}(x)\right| \leq \mathrm{R}$ at $\mathrm{x}=32^{\circ}$

4a. Find the 2 nd order Taylor polynomial for $\mathrm{f}(\mathrm{x})=\cos x$ centered at $\mathrm{x}=\frac{\pi}{4}$.
b. Then use the Remainder Estimation Thm to find $\left|f(x)-P_{2}(x)\right| \leq \mathrm{R}$ at $\mathrm{x}=42^{\circ}$

5a. Find the 3rd order Taylor polynomial for $\mathrm{f}(\mathrm{x})=\arcsin x$ centered at $\mathrm{x}=0$.
b. Then find the Lagrange Error Bound when $\mathrm{x}=.2$

6a. Find the 1 st order Taylor polynomial for $\mathrm{f}(\mathrm{x})=\frac{\ln x}{x}$ centered at $\mathrm{x}=1$.
b. Then use Taylors Inequality to find $\left|f(1.2)-P_{1}(1.2)\right| \leq \mathrm{R}$ at $\mathrm{x}=1.2$

7a. Find the 1 st order Taylor polynomial for $\mathrm{f}(\mathrm{x})=\mathrm{xe}^{-2 \mathrm{x}}$ centered at $\mathrm{x}=0$.
b. Then use Taylors Inequality to find $\left|f(.2)-P_{3}(.2)\right| \leq \mathrm{R}$ at $\mathrm{x}=.2$

8a. Find the 1 st order Taylor polynomial for $\mathrm{f}(\mathrm{x})=\sqrt{3+x^{2}}$ centered at $\mathrm{x}=1$
b. Then find the Lagrange Error Bound when $\mathrm{x}=1.2$

Determine a bound on the accuracy of the given approximation for the indicated range of x
9. $\sin x \approx x, \quad|x|<.05$
10. $\sin x \approx x-\frac{x^{3}}{3!}, \quad|x|<.15$
11. $\cos x \approx \frac{1}{2}-\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{3},\right), \quad\left|x-\frac{\pi}{3}\right|<.05$
12. $\tan x \approx 1+2\left(x-\frac{\pi}{4}\right), \quad\left|x-\frac{\pi}{4}\right|<\frac{\pi}{36}$
13. $\sqrt[3]{1+x} \approx 1+\frac{x}{3} \quad|x|<.025$
14. $\ln x \approx(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-1)^{3}, \quad|x-1|<. .1$
15. $\sqrt{1+\mathrm{x}} \approx 1+\frac{x}{2}, \quad 0<\mathrm{x}<.02$

